Modulation of Gating of a Metabolically Regulated, ATP-Dependent K⁺ Channel by Intracellular pH in B Cells of the Pancreatic Islet

Stanley Misler, Kevin Gillis, and Joseph Tabcharani

The Departments of Medicine and Cell Biology/Physiology and the Program in Biomedical Engineering, Washington University, St. Louis, Missouri 63110

Summary. Membrane-permeant weak acids and bases, when applied to the bath, modulate the resting membrane potential and the glucose-induced electrical activity of pancreatic B cells, as well as their insulin secretion. These substances alter the activity of a metabolite-regulated, ATP-sensitive K^+ channel which underlies the B-cell resting potential. We now present several lines of evidence indicating that the channel may be directly gated by pH_i . (1) The time course of K⁺(ATP) channel activity during exposure to and washout of $NH₄Cl$ under a variety of experimental conditions, including alteration of the electrochemical gradient for NH₄Cl entry and inhibition of the Na,¹/H_i¹ exchanger, resembles the time course of pH_i measured in other cell types that have been similarly treated. (2) Increasing *pH,* over the range $6.25-7.9$ increases $K^+(ATP)$ channel activity in cell-attached patches where the cell surface exposed to the bath has been permeabilized to H^+ by the application of the K^+/H^+ exchanger nigericin. (3) Increasing pH_i over a similar range produces similar effects on K +(ATP) channels in inside-out excised patches exposed to small concentrations of ATP_i . The physiological role of ΔpH_i in the metabolic gating of this channel remains to be explored.

Key Words ATP-dependent K^+ channel \cdot intracellular pH \cdot ammonium chloride . nigericin

Introduction

In B cells of the pancreatic islet, intracellular pH has often been considered as a possible link in the transduction of glucose metabolism to insulin secretion (for review *see* Pace, 1984a). This idea stems from evidence that (i) cellular metabolism can generate protons; (ii) intracellular pH can alter cell potassium permeability; and (iii) bath-applied membrane-permeant weak acids and bases can modulate metabolite-induced changes in P_{K^+} , electrical activity and insulin secretion, perhaps by acidifying or alkalinizing the cell (Eddlestone $\&$ Beigelman, 1983; Smith & Pace, 1983; Pace, 1984b; Rosario & Rojas, 1986b). Measurements of changes in intracellular pH during glucose metabolism has been attempted in several insulin secreting cells; results vary, however, from a small increase, to small decreases, to no change.

There is now a growing concensus that ATP_i inhibited K^+ (or $K^+(ATP)$) channels underlie the metabolically regulated resting $K⁺$ permeability $(P_{K^{\perp}})$ of B cells (for review *see*, e.g., Ashcroft, 1988). Closure of these channel by bath-applied metabolites depolarizes these cells and triggers cycles of electrical activity. Recently we found that bath application of 20 mm ammonium chloride, which transiently alkalinizes many other cells by ~ 0.5 pH units, transiently increases the mean activity *(l/i)* of K+(ATP) channels several-fold; bath application of sodium propionate, which transiently acidifies many other cells by 0.5 pH units, transiently decreases *Ill.* (Misler et al., 1987). These data, however, are in apparent conflict with previous reports that $K^+(ATP)$ channel activity in inside-out excised patches is virtually insensitive to pH_i over the range pH 7.3 to 6.6 in the absence of ATP *(see* Cook & Hales, 1984; Misler et al., 1986). To resolve this discrepancy, we have examined the time course of $K^+(ATP)$ channel activity during exposure to and washout of NH₄Cl under a variety of experimental conditions, including alteration of the electrochemical gradient for cation entry and inhibition of the Na_o^+/H_i^+ exchanger. We have also examined the effect of pH_i on $K^+(ATP)$ channel activity in insideout excised patches in the presence of ATP and the effect of pH_0 on K⁺(ATP) activity in cell-attached patches where most of the cell has been rendered permeable to H^+ via the application of the K^+/H^+ exchanger nigericin. These new data suggest that, in the presence of ATP_i , $K^+(ATP)$ channel activity is affected by pH_i over a range of pH_i 's assumed to bracket the extremes of cell pH produced by exposure to and removal of bath-applied weak acids and bases. We suggest that this occurs through an alteration in the interaction of ATP with the $K^+(ATP)$ channel. This work has been reported previously in abstract form (Gillis et al., 1988; Gillis & Misler, 1988).

Materials and Methods

Specific methods for preparation and culture of normal rat islet cells were previously detailed elsewhere *(see* Misler et al., 1986). Single channel recording was done with conventional patchclamping techniques standard for our lab. using a digital data acquisition and analysis system. Currents were filtered at 0.5-0.9 kHz and sampled at 1.0-2.0 kHz. To standardize nomenclature, the clamping potential, V_c , is defined as the negative of the potential of the interior of the pipette with respect to ground. The average number of channels open in a patch is denoted (by convention) as *I/i:* it is equal to the number of channels in the patch times the open probability of the individual channel $(N \cdot p_a)$. We measured this quantity with our interactive graphics-based analysis system using level crossings to determine when I, 2, 3 and more channels were open, and averaging the results for a 20-sec to 2-rain segment of record. In experiments where the time course of channel activity was required, channel currents were usually recorded continuously.

The standard extracellular-like solution (ES) contained (in mm): NaCl, 140; KCl, 5.5; CaCl₂, 2; MgCl₂, 1; HEPES · NaOH, 20, titrated to pH 7.3. The usual intracellular-like solution (IS) contained (in mM): KCl, 144; $MgCl₂$, 2; HEPES \cdot KOH, 20, titrated to pH 7.35 with KOH. This solution was modified for use as the cytoplasmic solution for inside-out excised patch (e.g., Fig. 6) by addition of 1 mm EGTA, hence making it similar to an intracellular-like solution. The pH of the IS or ES was modified over the pH range 6.8-7.8 by titrating HEPES buffer with HCI or KOH (NaOH) to near the desired pH, and over the range 6.6- 6.25 by using 20 mM PIPES instead of HEPES as the buffer and titrating this solution to the required pH.

Results

TIME COURSE OF EFFECT OF BATH APPLICATION OF NH₄Cl ON K⁺(ATP) CHANNEL ACTIVITY IN THE CELL-ATTACHED PATCH

In our earlier studies with cell-attached patches of B-cell membrane, we found that brief addition at constant pH₀ of 15-20 mm NH₄Cl to the bath, a maneuver which transiently alkalinizes cells, resulted in a rapid increase in $K^+(ATP)$ channel activity and cessation of glucose-induced action current activity. Conversely, brief addition of sodium propionate (15-20 mM), a maneuver which rapidly acidifies cells, resulted in a rapid decrease in K^+ (ATP) channel activity and, occasionally, the onset of action currents, even in the absence of glucose. Cells are known to handle "loads" of membranepermeant acids and bases in typical ways. For instance, in the case of NH4C1 exposure, typically, the uncharged permeant weak base $NH₃$ rapidly enters the cell by diffusion and associates with $H⁺$ ions to produce NH_4^+ , thus alkalinizing the cell (phase A). Subsequently, slower entry, over minutes, of the cationic conjugate acid, NH_{4}^{+} , through K^+ and/or Na⁺ channels, reduces the net alkalinization (phase B, or "plateau phase acidification"). Removal of $NH₄Cl$ from the bath results in a rapid efflux of NH_3 from the cell, hence liberating H^+ ions and resulting in "washout acidification" (phase C). The magnitude of "washout acidification" is directly related to the magnitude of "plateau phase acidification." The baseline pH_i is slowly restored, in part by the operation of a $Na_a⁺/H_i⁺$ exchanger (phase D) *(see* Boron, 1985). Assuming that $K^+(ATP)$ channel is directly affected by pH_i , or that the concentration of a gating substance is rapidly affected by pH_i , the time course of $K^+(ATP)$ channel activity during NH4CI exposure and its modification by certain ionic alterations and pharmacological maneuvers should be predictable, at least in broad outline.

Figure 1 depicts the time course of B cell $K^+(ATP)$ channel activity in the cell-attached patch during prolonged addition and subsequent washout of 20 mM NH4CI from a physiological saline (or ES) bath. Four distinct phases of channel activity are clearly seen, each corresponding to a phase of pH_i , outlined above, assuming that cell acidification reduces channel activity, while cell alkalinization increases it. This pattern was seen in six similar experiments. The time course of the final phase of channel activity seemed most variable; recovery of channel activity *(I/i)* occurred over 3-10 min in different cells.

Figure 2 demonstrates that cell exposure to $NH₄Cl$ in the presence of an isotonic KCl bath (IS) results in a slow, progressive rise in *1/i,* rather than the biphasic increase in I/i (phases A and B) seen with an ES bath. Correspondingly, *I/i* falls monotonically on washout of NH4CI, rather than displaying the undershoot and subsequent recovery (phases C and D) seen with the ES bath. Exposure of the cell to isotonic KC1 should abolish the membrane potential and, hence, the electrical driving force for passive $NH₄⁺$ entry into the cell. Therefore, this altered time course of *I/i* is consistent with the reduction in $NH₄⁺$ entry, leaving the alkalinizing action of NH₃ entry unopposed.

Figures 3 and 4 demonstrate that, at the time of removal of $NH₄Cl$ from an ES bath, addition of a $\text{Na}_o^+/\text{H}_i^+$ exchange blocker, amiloride (200 μ M), or isosomotic substitution of N-methyl-glucamine HCl for NaCl (at constant pH_0) results in a near abolition or, at least, very profound slowing of the recovery of *I/i* (phase D). Phase D returns after

Fig. 1. Time course of activity of the K⁺(ATP) channel in the cell-attached patch in response to addition and removal of NH₄Cl in the presence of an ES bath. (IS pipette, ES \pm NH₄CI bath, $V_c = 0$ mV). (a) Each point in the time course represents a 20-sec average. (b) Representative traces of each of the phases. Note that the amplitude of the K⁺(ATP) channel current is decreased by nearly twofold during NH₄CI exposure and recovers slowly after NH₄CI washout

Fig. 2. Response of the K*(ATP) channel to addition and removal of $NH₄Cl$ in the presence of an IS bath. (Cell-attached, IS pipette). As compared with Fig. I, note that in the IS bath phases B and C were nearly abolished. (a) Points in the time course are 10-sec averages. (b) Representative traces are given $(V_e = -60$ mV)

washout of amiloride or readmission of NaCI. As addition of amiloride or replacement of $Na⁺$ with Nmethylglucamine⁺ are recognized maneuvers for blocking recovery from cell acidification; these results are also consistent with the alteration of $K^+(ATP)$ channel activity by changing pH_i. Addition of amiloride to a normal ES bath results in a reversible two- to threefold reduction in $K^+(ATP)$ channel activity over 5-10 min *(see Fig. 3c)*.

APPROACHES TO EXAMINE MORE DIRECT EFFECTS OF pH_i ON $K^+(ATP)$ Channel Gating IN CELL-ATTACHED AND INSIDE-OuT EXCISED PATCHES

The results presented above are consistent with the notion that $K^+(ATP)$ channel activity is directly or indirectly gated by changes in pH_i . In earlier experiments, however, changes in pH_i , over a moderate range (pH 7.3-6.6), did not appear to consistently alter $K^+(ATP)$ channel activity in the inside-out excised patch in the absence of ATP. The discrepancy between the cell-attached and excised patch results might have arisen for several reasons: (i) ΔpH_i was unable to alter ATP-channel interaction, as ATP was not present in the bath; (ii) dissociable modulators of channel pH sensitivity might have been lost during patch excision; or (iii) ΔpH_i may be exerting an indirect effect in the intact cell by altering the concentration of substrates (e.g., the ATP/ADP ratio) that gate the channel.

Figure 5 presents an approach to examining the pH_i sensitivity of the K⁺(ATP) channel in the cellattached patch. Here, the cell, "patched" with an ES-filled pipette, was bathed in IS containing $5 \mu g$ / ml nigericin. This protonophore serves as a plasma membrane K^+/H^+ exchanger; in the face of a small or absent $K⁺$ gradient, it can be used to equilibrate pH_i with ambient pH_0 . By a similar mechanism, it reduces or collapses the $H⁺$ gradient across mito-

Fig. 3. Response of the $K^+(ATP)$ channel to addition and removal of NH4CI is altered by the presence of amiloride. (ES bath, IS pipette, cell-attached patch held at $V_c = 0$ mV). Each point represents a 10-sec average of channel activity. (a) Control experiment demonstrating the normal quadriphasic response to addition and washout of $NH₄Cl$. (b) Subsequent experiment on the same patch showing that addition of 200μ M amiloride blocks the recovery from cell acidification (phase D) presumably by blocking $\text{Na}_a^*/\text{H}_i^+$ exchange. (c) Traces of channel currents indicating a reduction in *I/i* caused by addition of amiloride (200 μ M) to the ES bath

chondrial inner membranes and uncouples mitochondrial oxidative phosphorylation. Addition of nigericin increased *l/i* to a new steady-state level over several minutes *(see* inset). This effect resembles those produced by the protonophore uncoupler, dinitrophenol, or the cytochrome a_3 inhibitor, sodium azide, and might be expected to result from a reduction in cytosolic ATP levels. When pH_0 was varied over the range 7.9 to 6.25 in the presence of nigericin, by exchanging the bath with IS solutions variously buffered by HEPES or PIPES titrated to

different pH's, *l/i* decreased monotonically with decreasing pH,,. Little variation in *l/i* with *pH,,* was seen in the absence of nigericin when pH_o was varied over a similar range in physiological saline (ES) *(see* Fig. 5b) or in the presence of 3 mM sodium azide. Exchanging PIPES buffer for HEPES buffer at pH,, of 6.9 or 7.3 produced no detectable effect on *l/i* (three experiments). These data support the hypothesis that the activity of the $K^+(ATP)$ channel is substantially influenced by changes in pH_i .

Figure 6 re-examines the effects of varying pH_i on $K^+(ATP)$ channel activity in the inside-out excised patch. In the two experiments depicted here, pH_i sensitivity was determined in the presence and absence of small concentrations of ATP. The concentrations of ATP chosen for these experiments were sufficient to maintain channel activity at steady-state values (i.e., prevent time-dependent "rundown" of channel activity), while reducing mean channel activity at least two- to threefold below that recorded in the absence of ATP. From these two complete experiments performed over a wide range of pH_i and five less complete ones, it was apparent that, in the absence of ATP, changes in pH_i had little consistent effect on $K^+(ATP)$ channel activity until pH_i was reduced to below pH 6.5 , where channels abruptly closed. On the contrary, in the presence of ATP, *l/i* decreased smoothly with decreasing pH_i . These results suggest that pH_i alters the interaction of ATP with the $K^+(ATP)$ channel over a wide range of pH_i .

LACK OF EFFECT OF ALTERATION OF pH_i ON OTHER K⁺ CHANNELS IN CELL-ATTACHED B-CELL PATCHES

In several experiments, such as that depicted in Fig. 7, we examined the effect of $NH₄Cl$ exposure on the gating of a voltage- and Ca^{2+} -activated K⁺, or $K^+(Ca^{2+})$ channel. In inside-out excised patches, these channels have a maximum slope conductance of 200-250 pS with symmetric IS (pipette and bath) and \sim 100 pS with ES in the pipette and IS in the bath. Their activity maximally increases e -fold per 10-12 mV incremental depolarization, and they are maximally Ca^{2+} sensitive at their cytoplasmic surface at a range of free [Ca²⁺] between 0.1 and 5 μ M. These channels are seen to open at high depolarizing voltages in the cell-attached patch *(see* Cook, Ikeuchi & Fujimoto, 1984; Findlay, Dunne & Petersen., 1985; Tabcharani & Misler, 1989). Gating of these channels by pH has previously been considered as the source of cell depolarization induced by weak acids and cell hyperpolarization induced by

Fig. 4. The recovery in I/i of the K⁺(ATP) channel from acidification (phase D) can also be blocked by Na,¹ removal. (Cell-attached, IS pipette, $V_c = 0$ mV except where indicated). (a) Traces from a control experiment with normal ES bath. (b) Traces from a subsequent experiment on the same patch with N-methyl-glucamine - HCI (N-Me-glucamine) replacing the NaCI in the ES bath at the time of washout of NH4C1. The reduction in single channel amplitude with acidification is believed to be due to membrane depolarization, because *I-V* curves under such conditions show no reduction in maximum slope conductance

Fig. 5. pH_a, affects the activity of the K⁺(ATP) channel in the presence of the protonophore nigericin. (a) Representative cell-attached patch experiment (ES pipette, IS bath) demonstrating that reducing pH_a decreases *I/i* of the K⁺(ATP) channel in the presence of 7.5 μ g/ ml nigericin (each point is a 1-3 min average). *Left insert:* sample traces. *Right insert:* time course of initial increase in *I/i* following addition of nigericin. (b) Lack of effect of pH_a on K⁺(ATP) channel activity in the absence of nigericin (each point is a 10-sec average)

weak bases (Rosario & Rojas, 1986b). $K^+(Ca^{2+})$ channels in inside-out excised patches from neonatal mouse islet cells have been reported to be activated by elevated pH_i and suppressed by reduced pH_i over the range of pH_1 8.0 to 6.0 (Cook et al., 1984). In the experiment shown here, which was

typical of a series of three, the activity of the $K^+(Ca^{2+})$ channel was determined as a function of membrane clamping voltage (V_c) immediately before and again 10 min after addition of 20 mm $NH₄Cl$ to an IS bath. At the later time, mean activity of $K^+(ATP)$ had reached a new and higher steady

Fig. 6. Effect of pH_i on $K^+(ATP)$ channel activity in the inside-out excised patch. (a) Titration curve of $K^+(ATP)$ activity from two experiments, demonstrating that alkalinization above physiological pH acts by disinhibiting ATP-induced closure. Open circles: 0 ATP: filled circles: $100 \mu \text{M}$ ATP: open triangles: 0 ATP; closed triangles: $50 \mu M$ ATP. Each point is a 2 min average. (b) Representative traces from the experiment symbolized by triangles in (a)

state, suggesting that pH_i had stabilized at a more alkaline level. $K^+(Ca^{2+})$ channel, however, was not altered.

Another pair of voltage-dependent K^+ channels, often seen to open in response to membrane depolarization in many cell-attached patches, also appears to be insensitive to elevated pH_i . These "delayed rectifier" type K + channels *(see* Rorsman & Trube, 1986; Misler et al., 1988; Zuenkler, Trube & Ohno-Shosaku, 1988) have conductances of 5-7 and 15-17 pS (ES pipette). They are activated by depolarization $>20-30$ mV from rest, where they display an e-fold increase in initial activity with each 7-8 mV incremental depolarization and then inactivate over seconds. Figure 8 demonstrates the lack of effect on the activity of the 15-pS channel in a cell-attached patch after application of NH4CI to an IS bath containing 10 mm glucose.

Discussion

We have further examined the effects of a bathapplied, membrane-permeant weak base on the activity of $K^+(ATP)$ channels in cell-attached patches of rat and human pancreatic islet B cells. This maneuver is known to reduce metabolite-induced electrical activity and insulin secretion by B cells. A variety of evidence on the metabolic gating, selectivity and pharmacology of the $K^+(ATP)$ channel, coupled with its being the predominant $K⁺$ channel

open at rest, strongly suggests that it is the major contributor to resting K^+ permeability *(see, e.g.,* Misler et al., 1987). We now present evidence that the time course of $K^+(ATP)$ channel activity in rat islet B cells, during exposure to and washout of NH4CI, is consistent with the channel's being directly or indirectly gated by changes in intracellular pH.

In B cells exposed to physiological saline, $K^+(ATP)$ channel activity (i) increases over 60–90 sec after application of 20 mm $NH₄Cl$; (ii) recovers over several minutes of continuous exposure; (iii) rapidly undershoots the baseline values on washout of NH4CI, and (iv) finally recovers to baseline values over a variable time course. The time course of these events resembles the phases of changes in internal pH measured in many cells during exposure and washout of NH4CI, namely, (i) immediate alkalinization, (ii) plateau phase acidification, (iii) washout acidification and (iv) recovery alkalinization from acidification which restores baseline pH. Application of NH4Cl in a near isotonic KCL solution, which slows passive entry of $NH₄⁺$ and prevents plateau acidification, blocks the slow reduction in $K^+(ATP)$ channel activity during prolonged NH₄Cl exposure. Blockade of Na_o^+/H_i^+ exchange by addition of amiloride or substitution of N-methylglucamine⁺ for $Na_o⁺$ during NH₄Cl washout, maneuvers which block recovery alkalinization in most cells, greatly slow the recovery of channel activity after NH₄Cl washout. The role of Cl^{-}/HCO_{3}^{-} ex-

Figs. 7 and 8. Lack of effect of pH_i on two voltage-gated channels in pancreatic B cells, In each case, the cells were bathed in IS containing 10 mM glucose. This concentration of glucose was sufficient to close K⁺(ATP) channels. NH₄Cl was then added to the IS bath, which should result in a prolonged alkalinization *(see* Fig. 2 and text). The IS bath also clamps the cell's resting potential to near zero, so the *V,* always represents the true potential across the patch of membrane. (Cell-attached patches.) Fig. 7. *Left:* Tabulated voltage-dependence of the activity of the "maxi-K⁺" Ca²⁺-activated K⁺ channel before (triangles), during exposure to (squares), and again after washout of (circles) 15 mm NH₄Cl. (IS pipette) Each point is the average current recorded for at least 30 sec at the indicated potential. Right: Sample traces obtained at a range of V_c's. **Fig. 8.** *Left:* Tabulated voltage dependence of the activity of the 15-pS "delayed rectifier" type K⁺ channel before (open circles) and 10 min after (filled circles) addition of 20 mm NH₄CI to IS bath. (ES pipette) Each point is the average number of channels open measured between 64-864 sec after 10 depolarizing pulses from -90 mV to the indicated potentials. *Right:* Sample traces obtained at $V_c = 0$ mV. Section of record included in analysis shown on left is indicated by time bracket in panel on right. Note presence of small outward currents corresponding to $5-7$ pS K $*(DR)$ channels. Their activity is likewise unaffected by the test maneuver

changer in pH restoration was not evaluated, as we used $HCO₃$ -free buffers. In addition, we now demonstrate that, in the presence of ATP_i , $K^+(ATP)$ channel activity in inside-out patches changes monotonically with bath pH over the range of 7.9 to 6.2, with increasing pH increasing mean channel activity *(I/i)* over that range. Under conditions where bath application of NH4CI increases *l/i* of the $K^+(ATP)$ channel many-fold, the activities of the large conductance voltage-dependent, Ca^{2+} -activated K^+ (or $K^+(Ca^{2+})$) channels and delayed rectifier-type K^+ (or K^+ (DR)) channels are unaffected.

While we have concentrated on the time course of effects of cell loading with a weak base (NH_3) on $K^+(ATP)$ channel gating, cell loading with a membrane-permeant weak acid should predictably alter $K^+(ATP)$ channel activity as well. Cell exposure to the salt of a weak organic acid (C^+A^-) initially results in diffusional entry of the uncharged weak acid (AH^o) with prompt cellular acidification. The subsequent time course of pH_i recovery, or even further slow acidification, depends on the balance between the operations of (i) an acid extrusion system, which tends to raise pH_i , and (ii) diffusional efflux system for A^- , which tends to reduce pH_i. Washout of $C+A^-$ results in a variable time course

of recovery of pH_i , which may include significant overshoot, depending on the degree of pH_i recovery during acid loading. In experiments in which we continuously monitored $K^+(ATP)$ channel activity in resting rat B cells or $NaN₃$ -treated RINm5F insulinoma cells, we noted an abrupt, immediate drop on exposure to 20 mM sodium propionate. In most B cells, $K^+(ATP)$ activity rapidly returned to normal; in others, it remained depressed for minutes. In two experiments where $K^+(ATP)$ activity rapidly recovered during sodium propionate exposure, a second application of propionate in the presence of 200 μ M amiloride resulted in slowed or absent recovery. Overshoot of *l/i* on washout was variably seen; it was most often in cells that showed recovery of *1/i* during propionate exposure. Often, in these cases, the overshoot was quite prolonged; however, channel activity could then be reduced by addition of glucose (Gillis et al., 1988). Hence, qualitatively, these time courses seemed related to changes in pH_i , though not as clearly as with $NH₄Cl$. The membrane permeant weak acid $CO₂$ is present in the physiological buffer pair $CO₂/HCO₃$. Recent evidence suggests that replacement of HEPES buffer with $CO₂/HCO₃$, which might result in at least transient acidification, produced B-cell depolarization and closure of $K^+(ATP)$ channels (Carroll et al., 1988).

In this series of experiments, we had hoped (i) to examine the range of change in $K^+(ATP)$ channel activity during NH4CI exposure and washout, and then (ii) to attempt to estimate the range of pH_i achieved by calibrating the pH_i sensitivity of that cell-attached patch with the alteration of pH_i in the presence of nigericin. Unfortunately, to date, no patch has survived a full range of maneuvers. A more definitive approach may be to perform a set of companion experiments following the course of pH_i spectrofluorometrically in cells loaded with a membrane-permeant carboxyfluorescein derivative (e.g., BCECF), which is directly sensitive to pH_i . Judging from the pH response of a host of other cells to similar maneuvers, pH_i might rise as high as 7.6–7.8 with application of $NH₄Cl$ and fall as low as 6.5 with washout.

An effect which we cannot as yet explain is the slow reduction in $K^+(ATP)$ channel amplitude during prolonged exposure of the cell to $NH₄Cl$ in a modified extracellular solution. In cell-attached patches formed with near isotonic KC1 pipettes, single channel conductance measured from inward currents (IS pipette and ES bath) is not affected by this maneuver, but a sizeable shift in the reversal (or zero current) potential of the channel is seen (often as much as 30 mV). This suggests a steady-state cell depolarization. The $K^+(ATP)$ channel may be somewhat permeable to NH₄Cl in that, at rest, the B-cell membrane is estimated to be roughly 1/3 as permeable to NH_4^+ as to K⁺ (Rosario & Rojas, 1986a). Assuming (i) that $NH₄⁺$ acts as a permeant blocker of the $K^+(ATP)$ channel from the cytoplasmic surface of the membrane, as it does with the K+(Ca 2+) channel *(see* Tabcharani & Misler, 1989), and (ii) the $K^+(ATP)$ channel of the B cell, like the $K^+(Ca^{2+})$ channel, behaves like a multi-ion channel where mutual repulsion between cations augments their traversal of the membrane, two predictions seem reasonable. (i) Partial replacement of $NH₄⁺$ for bath Na⁺ should decrease E_{rev} of the channel. (ii) Accumulation of $NH₄⁺$ intracellularly in the presence of low extracellular K^+ might reduce channel conductance. The net effect would be to reduce the contribution of $K^+(ATP)$ channel to the resting potential. In the face of other resting conductances (e.g., a nonselective cation channel), this would result in cell depolarization.

Three major physiological questions remain unanswered by this study:

1) Do changes in fuel metabolism by the B cell alter pH_i sufficiently to significantly contribute to channel gating? Unfortunately, there is no consistent set of calibrated data on pH_i in the normal adult rat B cell for comparison. This situation should be remediable using BCECF-loaded cells. It is interesting to note that in situations where the opposing effects of lowering both pH_i and ATP are made to compete (e.g., addition of mitochondrial inhibitors) $K^+(ATP)$ channel activity rises very dramatically.

2) How does a change in pH_i actually alter ATP gating of the channel? Reducing pH_i 6.5–6.25 appears to block the channel even in the absence of ATP, perhaps by titrating an amino acid residue and affecting a conformational change that deforms the channel. The reduction in activity is not expected to be due to an acceleration of channel "rundown," because the effect can be at least partially reversed by returning to pH 7.3 without "refreshing" the channels in an ATP-containing solution. Increasing pH_i , on the other hand, modulates the gating of the channel by ATP_i . Such an effect could be due to a change in the affinity of the binding site for ATP or a shift in the ionization of ATP. Recently, it has been suggested that $ATP⁴⁻$ may be the species that binds to channel (Ashcroft & Kakei, 1987; Dunne, Illot & Petersen, 1987). Given that the pK_a of the phosphate group of ATP is 6.5 (Alberty, Smith & Bock, 1951), it is possible that $ATP³⁻$ is more effective than ATP^{4-} in closing the $K^+(ATP)$ channel. This effect should be directly testable.

3) Does a change in intracellular pH, provoked

by bath-applied weak acids and bases, also alter $K^+(ATP)$ channel gating by altering ATP production or *ATP/ADP* ratio'? Neutral weak acids and bases should partition across the mitochondrial inner membrane where they might alter compartmental pH, thereby changing the proton-motive force which drives ATP production. Experiments to measure ATP levels under comparable conditions are in progress.

We thank Michael McDaniel (Department of Pathology, Washington University) for generously providing the rat islets used in these studies, Abed Hammoud for his participation in the performance and analysis of experiments depicted in Figs. 2 and $3a$, Lee Falke for continuing encouragement, stimulating discussion and programming help, and Betty Ytzaina for preparing the typescript. This work was supported by the National Institutes of Health (grant no. DK-37380).

References

- Alberty, R,A., Smith, R.M., Bock, R.M. 1951. Apparent ionization constants of the adenosine phosphates and related compounds, *J. Biol. Chem.* 193:425-434
- Ashcroft, F. 1988. Adenosine 5'-triphosphate-sensitive potassium channels. *Annu. Rev, Nearosci.* 11:97-118
- Ashcroft, F.M., Kakei, M. 1987. Effects of external Mg^{2+} on ATP-sensitive K channels in isolated rat pancreatic B cells. J. *Physiol, (London)* 390:72P
- Boron, W.F. 1985. Control of intracellular pH. *In:* The Kidney: Physiology and Pathophysiology. D.W. Seldin and G. Giebisch, editors, pp. 1417-1439. Raven, New York
- Carroll, P.B., Li, M.X., Rojas, E., Atwater, 1. 1988. The ATPsensitive K^+ channel in pancreatic B cells is inhibited in physiological bicarbonate buffer. *FEBS Lett.* 234:208-212
- Cook, D.L,, Hales, N. 1984. Intracellular ATP directly blocks K + channels in pancreatic B ceils. *Nature (London)* 311:271- 273
- Cook, D.L., Ikeuchi, M., Fujimoto, W.Y. 1984. Lowering of pH_i inhibits Ca²⁺-activated K⁺ channels in pancreatic B cells. Na*ture (London)* 311:269-271
- Dunne, M.J., Illot, M.C., Petersen, O.H. 1987. Interaction of diazoxide, tolbutamide and $ATP⁴⁻$ on nucleotide-dependent K + channels in an insulin-secreting cell line. *J. Membrane Biol.* 99:215-224
- Eddlestone, G.T., Beigelman, P.M. 1983. Pancreatic β cell electrical activity: The role of anions and control of pH, *Am. J. Physiol.* 244:C 188-C 197
- Findlay. 1., Dunne, M.J., Petersen, O.H. 1985. High-conductance K^+ channel in pancreatic islet cells can be activated and inactivated by internal calcium. *J. Membrane Biol.* 83:169- 175
- Gillis, K., Misler, S. 1988, Effects of pH_i on the activity of a metabolite regulated, ATP_r -sensitive K⁺ channel in rat pancreatic islet cells. *J. Gen. Physiol.* 92:6-7a
- Gillis, K., Tabcharani. J., Hammoud, A., Misler, S. 1988. Effects of ammonium chloride and sodium propionate on the activity of a metabolite regulated $K⁺$ channel in rat pancreatic islet and RIN insulinoma cells. *Biophys. J.* 53:550a
- Misler, S., Falke, L.C., Gillis, K., McDaniel, M.L. 1986. A metabolite-regulated potassium channel in rat pancreatic B cells. *Proc. Natl. Acad. Sei. USA* 83:7119-7123
- Misler, S., Gillis, K., Tabcharani, J., Falke, L. 1987. Gating and selectivity of a metabolite regulated $K⁺$ channel in rat pancreatic islet B cells. *J. Gen. Physiol.* **90:19a**
- Misler, S., Tabcharani, J., Gillis, K., Hammoud, A., Falke, L. 1988. Voltage gated single K^+ and Ca^{2+} channels in rat pancreatic islet B cells. *J. Gen. Physiol.* 92:7a-8a
- Pace, C.S. 1984a. Role of pH as a transduction device in triggering electrical and secretory responses in islet B cells. *Fed. Proe.* 43:2379-2384
- Pace, C.S. 1984h. Amiloride and organic weak acids enhance the electrical response of B cells to glucose. *Mol. Physiol.* 6:339- 348
- Rorsman, P., Trube, G. 1986. Calcium and delayed potassium currents in mouse pancreatic β cell under voltage clamp conditions. *J. Physiol. (London)* 374:531-550
- Rosario, L.M., Rojas, E. 1986a. Potassium channel selectivity in mouse pancreatic B cells. *Am. J. Physiol.* 250:C90-C94
- Rosario, L.M., Rojas, E. 1986b. Modulation of K^+ conductance by intracellular pH in pancreatic beta cells. *FEBS Lett.* 200:203-209
- Smith, J.S., Pace, C.S. 1983. Modification of glucose induced insulin release by alteration of pH. *Diabetes* 32:61-66
- Tabcharani, J.A., Misler, S. 1989. Ca²⁺ activated K⁺ channel in rat pancreatic islet B cells: Permeation gating and blockade by cations. *Biochim. Biophys. Aeta (in press)*
- Zuenkler, B.J., Trube, G., Ohno-Shosaku, T. 1988. Forskolininduced block of delayed rectifier $K⁺$ channels in pancreatic B-cells is not mediated by cAMP. *Pfluegers Arch.* 411:613- 619

Received 8 November 1988; revised 4 January 1989